COLUMBIA UNIVERSITY

School of Professional Studies

Master of Science in Sustainability Science

SUSC 5060 Statistics, Dat 3 credits Wednesdays 4:10-6PM	a Analysis, and Coding for Sustainability Science
Instructor (Fall 2023):	James L. Davis, Lamont Research Professor in the Lamont-Doherty Earth Observatory of Columbia University, jdavis@ldeo.columbia.edu, (845) 365-8425;
Instructor (Spring 2024):	Michael Previdi, Lamont Associate Research Professor in the Lamont-Doherty Earth Observatory of Columbia University, <u>mprevidi@ldeo.columbia.edu</u> , (845) 365-8631
Office Hours:	By appointment
Response Policy:	Instructor is available for short discussions after class or on e-mail, with response within one busi- ness day. Longer discussions should be scheduled during office hours (Zoom or phone by appoint- ment).

Course Overview

Students in the Master of Science in Sustainability Science will encounter a range of scientific problems throughout their Sciencespecific courses that require a strong foundational level of mathematical and statistical knowledge. In addition, coursework will involve computer coding to read, analyze, and visualize data sets. This course provides an overview of essential mathematical concepts, an introduction to new concepts in statistics and data analysis, and provides computer coding skills that will prepare students for coursework in the Master of Science in Sustainability Science program as well as to succeed in a career having a sustainability science component. In addition to an overview of essential mathematical concepts, the skills gained in this course include statistics, and coding applied to data analysis in the Sustainability Sciences. Many of these skills are broadly applicable to science-related professions, and will be useful to those having careers involving interaction with scientists, managing projects utilizing scientific analysis, and developing science-based policy. Students enrolled in this course will learn through lectures, class discussion, and hands-on exercises that address the following topics:

- 1. Mathematical concepts in calculus, trigonometry, and linear algebra.
- 2. Mathematical concepts related to working on a spherical coordinate system (such as that for the Earth).
- 3. Probability and statistics, including use of probability density functions to calculate expectations, hypothesis testing, and the concept of experimental uncertainty.
- 4. Concepts in data analysis, including linear least squares, time-series analysis, parameter uncertainties, and analysis of fit.
- 5. Computer coding skills, including precision of variables, arrays and data structures, input/output, flow control, and subroutines, and coding tools to produce basic X-Y plots as well as images of data fields on a global map.

Instruction and coding assignments will utilize Python, but the basic coding concepts taught in the course are of wide applicability.

An undergraduate background in any field of science or engineering is required, as is expected for students in the MS in Sustainability Science Program. This course is approved to satisfy the Area 1 – Integrative Courses in Sustainability – curriculum requirement for the M.S. in Sustainability Science program.

Learning Objectives

By the end of this course, students will be able to:

- L1: Utilize basic mathematical skills for use in solving scientific problems in sustainability science.
- L2: Understand basic concepts in probability and statistics and their relationship to real-world data.
- L3: Apply basic coding techniques to read a variety of data files in common scientific formats.

Master of Science in Sustainability Science

L4: Perform data analysis on complex data sets and produce plots and images of calculated computer models and data sets.

Readings

Core Text:

Hill, C. (2020), Learning Scientific Programming with Python, Second Edition, Cambridge University Press, ISBN 978-1-108-74591-8.

On-line resources:

Spyder documentation: https://docs.spyder-ide.org/current/index.html

Anaconda Navigator documentation: https://docs.anaconda.com/anaconda/navigator/

Ryan Abernathey, An Introduction to Earth and Environmental Data Science: https://earth-env-data-science.github.io/intro

Online Python reference: https://docs.python.org/3/reference/

Resources

Columbia University Library

Columbia's extensive library system ranks in the top five academic libraries in the nation, with many of its services and resources available online: <u>http://library.columbia.edu/</u>.

SPS Academic Resources

The Office of Student Affairs provides students with academic counseling and support services such as online tutoring and career coaching: <u>http://sps.columbia.edu/student-life-and-alumni-relations/academic-resources</u>.

Programming/Data Analysis

Students will download the free-access application Anaconda-Navigator, which they will need to install on their computers prior to the second class. In addition, students should be familiar with standard office software to support their completion of course assignments.

Course Requirements (Assignments)

Class Participation (20%) (L1, L2, L3, L4)

Class participation, including oral and written communication, exercises important job and life skills. Assigned readings must be completed before class. Classes will begin with an interactive overview lecture and include class discussions.

Jupyter Notebook (35%) (L1, L2, L3, L4)

Most lectures will include in-class coding exercises during the final ~30-40 minutes of class. Students will work in small groups (~3-4 students per group) to complete these coding exercises. Each group will maintain a Jupyter notebook and will add code to this notebook during each of the in-class coding exercises, submitting their completed notebook at the end of the semester.

Master of Science in Sustainability Science

Problem Sets (45%) (L1, L2, L3, L4)

Students will be assigned three take-home computer problem sets, which will enable the students to exercise their problemsolving abilities using the mathematical, statistical and data analysis concepts covered in the course.

Evaluation/Grading

Participation (20%)

Participation includes class attendance, performing assigned reading, and class discussion. The students are expected to show critical thinking, respectful interactions with classmates and the instructor, and a positive attitude towards learning and freely discussing the topics proposed.

Jupyter Notebook (35%)

Most lectures will include in-class coding exercises during the final \sim 30-40 minutes of class. Students will work in small groups (\sim 3-4 students per group) to complete these coding exercises. Each group will maintain a Jupyter notebook and will add code to this notebook during each of the in-class coding exercises, submitting their completed notebook at the end of the semester.

Problem Sets (45%)

Three problem sets, each having 15% weight, will each be graded on a scale of 0-100. The students will be asked to write code to solve problems that will exercise the mathematical, statistical and data analysis concepts covered in the course. The students will be graded on the degree to which they appropriately translate the problems to computer code (50%), the use of proper syntax in their code (30%), and on arriving at the correct answer (20%).

Final Grading Scale

The final grade will be calculated as described below:

Grade	Percentage	
A+	98–100 %	
Α	93–97.9 %	
A-	90–92.9 %	
B+	87–89.9 %	
В	83-86.9 %	
B-	80-82.9 %	
C+	77–79.9 %	
С	73–76.9 %	
C-	70–72.9 %	
D	60–69.9 %	
F	59.9% and below	

ASSIGNMENT	% Weight
Jupyter notebook	35
Problem set #1	15
Problem set #2	15
Problem set #3	15
Class participation	20

Master of Science in Sustainability Science

Course Policies

Participation and Attendance

You will be expected to come to class on time and prepared. It is understandable that new concepts to which you are introduced in the readings may not be fully absorbed; you will not be penalized for having an imperfect understanding of the concepts in the readings, but you will be expected to ask questions during class discussion. Attendance is thus very important, and more than one absence will affect your grade. Lecture notes will be made available on the day of class.

Late work

Work that is not submitted on the due date noted in the course syllabus without advance notice and permission from the instructor will be graded down 1/3 of a grade for every day it is late (e.g., from a B+ to a B for 1 day late).

Classwork/Labs

On most class days, students will be assigned coding problems in class and have class time to work on these. Students should bring their laptops to class.

Homework

Problem sets must be worked on outside of class. Collaboration on these assignments is encouraged, but students must turn in their own work.

School Policies

Copyright Policy: Please note—Due to copyright restrictions, online access to this material is limited to instructors and students currently registered for this course. Please be advised that by clicking the link to the electronic materials in this course, you have read and accept the following: The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement.

Academic Integrity: Columbia University expects its students to act with honesty and propriety at all times and to respect the rights of others. It is fundamental University policy that academic dishonesty in any guise or personal conduct of any sort that disrupts the life of the University or denigrates or endangers members of the University community is unacceptable and will be dealt with severely. It is essential to the academic integrity and vitality of this community that individuals do their own work and properly acknowledge the circumstances, ideas, sources, and assistance upon which that work is based. Academic honesty in class assignments and exams is expected of all students at all times. SPS holds each member of its community responsible for understanding and abiding by the SPS Academic Integrity and Community Standards posted at http://sps.columbia.edu/stu-dent-life-and-alumni-relations/academic-integrity-and-community-standards. You are required to read these standards within the first few days of class. Ignorance of the School's policy concerning academic dishonesty shall not be a defense in any disciplinary proceedings.

Accessibility: Columbia is committed to providing equal access to qualified students with documented disabilities. A student's disability status and reasonable accommodations are individually determined based upon disability documentation and related information gathered through the intake process. For more information regarding this service, please visit the University's Health Services website: <u>http://health.columbia.edu/services/ods/support</u>.

COLUMBIA UNIVERSITY

School of Professional Studies

Master of Science in Sustainability Science

Spring 2024 Course Schedule/Course Calendar

Class Date	Topics an Math/Stats/Data analysis	Readings (due before class on this day)	Assignment handed out	Assignments due midnight Friday follow- ing Class Date	
1/17	Course overview	Coding			
1/24	Anaconda-Navigator environme bers, variables, precision, relatio Python Objects	Hill, Chapter 1, §2.1–2.4			
1/31	Flow control, input/output, funct building and debugging code	Hill, §2.5–2.7, Chapter 3, §4.1			
2/7	Jupyter notebooks	Hill, Chapter 5			
2/14	Trigonometry, vectors, spherical				
2/21	Calculus		Problem set #1		
2/28	Linear algebra	NumPy library	Hill, §6.1.1- 6.1.9, §6.5		
3/6	Dictionaries and sets, Python dat action with the OS	Hill, §4.2-4.4, §6.1.10-6.1.12		Problem set #	
3/13	No class: spring recess				
3/20	Overview of probability	NetCDF files for climate and other data sets		Problem set #2	
3/27	Random variables, statistics, PDFs, expected values	OPeNDAP and xarray library	Abernathey section on xar- ray		
4/3	Data cleaning and preparation: dealing with errors, missing values, and outliers	Basic and geographic plotting with PyGMT	Browse pygmt.org		Problem set #2
4/10	Data fitting: models, parame- ters, linear least squares	Geographic plotting with Cartopy	Browse pypi.org/pro- ject/Cartopy/		
4/17	Data reduction in the space and time domains: averaging, filter- ing, principal components	Tabular data, Pandas	Hill, §9, Aber- nathey section on pandas	Problem set #3	
4/24	Machine learning with Python	i			Problem set # and Jupyter notebook (due 5/3)